ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

A classifier with clustered sub classes for the classification of suspicious areas in digital mammograms

หน่วยงาน Central Queensland University, Australia

รายละเอียด

ชื่อเรื่อง : A classifier with clustered sub classes for the classification of suspicious areas in digital mammograms
นักวิจัย : McLeod, Peter. , Verma, Brijesh.
คำค้น : Breast , Applied research. , 890202 Application Tools and System Utilities. , 080108 Neural, Evolutionary and Fuzzy Computation. , 080109 Pattern Recognition and Data Mining. , Breast , Radiography, Medical , Classifiers -- Clustering -- Digital mammography -- Neural networks -- Support vector machines
หน่วยงาน : Central Queensland University, Australia
ผู้ร่วมงาน : -
ปีพิมพ์ : 2553
อ้างอิง : http://hdl.cqu.edu.au/10018/56358
ที่มา : McLeod, P & Verma, B, 2010, 'A classifier with clustered sub classes for the classification of suspicious areas in digital mammograms' in IEEE editors (eds.) 2010 IEEE World Congress on Computational Intelligence (IEEE WCCI 2010): International Joint Conference on Neural Networks (IJCNN), 18-23 July 2010, Barcelona, Spain, IEEE, USA, pp. 31-38, http://dx.doi.org/10.1109/IJCNN.2010.5596832
ความเชี่ยวชาญ : -
ความสัมพันธ์ : 2010 IEEE World Congress on Computational Intelligence (IEEE WCCI 2010). International Joint Conference on Neural Networks (IJCNN), 18-23 July 2010, Barcelona, Spain. USA : IEEE, 2010. p. 31-38 8 pages Refereed 9781424469178 (online) 9781424481262 , ACQUIRE [electronic resource] : Central Queensland University Institutional Repository.
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

This paper presents a novel methodology for the classification of suspicious areas in digital mammograms. The methodology is based on the fusion of clustered sub classes with various intelligent classifiers. A number of classifiers have been incorporated into the proposed methodology and evaluated on the well known benchmark digital database of screening mammography (DDSM). The results in the form of overall classification accuracies, TP, TN, FP and FN have been analyzed, compared and presented. The results of all four tested classifiers with clustered sub classes on the DDSM benchmark database show that the proposed methodology can significantly improve the accuracy and reduce the false positive rate.

บรรณานุกรม :
McLeod, Peter. , Verma, Brijesh. . (2553). A classifier with clustered sub classes for the classification of suspicious areas in digital mammograms.
    กรุงเทพมหานคร : Central Queensland University, Australia.
McLeod, Peter. , Verma, Brijesh. . 2553. "A classifier with clustered sub classes for the classification of suspicious areas in digital mammograms".
    กรุงเทพมหานคร : Central Queensland University, Australia.
McLeod, Peter. , Verma, Brijesh. . "A classifier with clustered sub classes for the classification of suspicious areas in digital mammograms."
    กรุงเทพมหานคร : Central Queensland University, Australia, 2553. Print.
McLeod, Peter. , Verma, Brijesh. . A classifier with clustered sub classes for the classification of suspicious areas in digital mammograms. กรุงเทพมหานคร : Central Queensland University, Australia; 2553.