ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Intrusion detection using machine learning : past and present

หน่วยงาน Central Queensland University, Australia

รายละเอียด

ชื่อเรื่อง : Intrusion detection using machine learning : past and present
นักวิจัย : Mazid, Mohammed. , Ali, Shawkat. , Tickle, Kevin.
คำค้น : Intrusion detection systems (Computer security) , Applied research. , Computer networks. , Data mining. , 890202 Application Tools and System Utilities. , 080109 Pattern Recognition and Data Mining. , Intrusion detection
หน่วยงาน : Central Queensland University, Australia
ผู้ร่วมงาน : -
ปีพิมพ์ : 2553
อ้างอิง : http://hdl.cqu.edu.au/10018/54157
ที่มา : Mazid, M, Ali, S & Tickle, K 2010, 'Intrusion detection using machine learning: past and present', in A B M Ali & Yang Xiang (eds), Dynamic and advanced data mining for progressing technological development: innovations and systemic approaches, IGI Global, USA.
ความเชี่ยวชาญ : -
ความสัมพันธ์ : Dynamic and advanced data mining for progressing technological development : innovations and systemic approaches / [edited by] A.B.M. Shawkat Ali, Yang Xiang. USA : IGI Global, 2010. Chapter 5, p. 70-107 497 pages 17 chapters 1605669083 9781605669083 (hardcover) , ACQUIRE [electronic resource] : Central Queensland University Institutional Repository.
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Intrusion detection has received enormous attention from the beginning of computer network technology. It is the task of detecting attacks against a network and its resources. To detect and counteract any unauthorized activity, it is desirable for network and system administrators to monitor the activities in their network. Over the last few years a number of intrusion detection systems have been developed and are in use for commercial and academic institutes. But still there are some challenges to be solved. This chapter will provide the review, demonstration and future direction on intrusion detection. The authors’ emphasis on Intrusion Detection is various kinds of rule based techniques. The research aims are also to summarize the effectiveness and limitation of intrusion detection technologies in the medical diagnosis, control and model identification in engineering, decision making in marketing and finance, web and text mining, and some other research areas.

บรรณานุกรม :
Mazid, Mohammed. , Ali, Shawkat. , Tickle, Kevin. . (2553). Intrusion detection using machine learning : past and present.
    กรุงเทพมหานคร : Central Queensland University, Australia.
Mazid, Mohammed. , Ali, Shawkat. , Tickle, Kevin. . 2553. "Intrusion detection using machine learning : past and present".
    กรุงเทพมหานคร : Central Queensland University, Australia.
Mazid, Mohammed. , Ali, Shawkat. , Tickle, Kevin. . "Intrusion detection using machine learning : past and present."
    กรุงเทพมหานคร : Central Queensland University, Australia, 2553. Print.
Mazid, Mohammed. , Ali, Shawkat. , Tickle, Kevin. . Intrusion detection using machine learning : past and present. กรุงเทพมหานคร : Central Queensland University, Australia; 2553.