ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Neural vs. statistical classifier in conjunction with genetic algorithm feature selection in digital mammography

หน่วยงาน Central Queensland University, Australia

รายละเอียด

ชื่อเรื่อง : Neural vs. statistical classifier in conjunction with genetic algorithm feature selection in digital mammography
นักวิจัย : Zhang, Ping. , Verma, Brijesh. , Kumar, Kuldeep.
คำค้น : Pattern recognition systems. , TBA. , TBA. , TBA. , Breast , Genetic algorithms. , Neural networks (Computer science) , Microcalcifications pattern classification -- Neural networks -- Statistical methods -- Feature selection -- Genetic algorithm
หน่วยงาน : Central Queensland University, Australia
ผู้ร่วมงาน : -
ปีพิมพ์ : 2546
อ้างอิง : http://hdl.cqu.edu.au/10018/42631 , http://dx.doi.org/10.1109/CEC.2003.1299806 , cqu:5485
ที่มา : Zhang, P, Verma, B & Kumar, K 2003, 'Neural Vs. Statistical Classifier in Conjunction with Genetic Algorithm Feature Selection in Digital Mammography' in IEEE 2003 Congress on Evolutionary Computation (CEC '03). Canberra, Australia, 8-12 December, 2003, pp.1206 -1213.http://dx.doi.org/10.1109/CEC.2003.1299806 (viewed 1/4/10)
ความเชี่ยวชาญ : -
ความสัมพันธ์ : IEEE Congress on Evolutionary Computation (CEC '03), Canberra, Australia, 8-12 December 2003. Piscataway, NJ. : IEEE - Press, 2003. p. 1206-1213 8 pages Refereed 0780378040 , ACQUIRE [electronic resource] : Central Queensland University Institutional Repository.
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Digital mammography is one of the most suitable methods for early detection of breast cancer. It uses digital mammograms to find suspicious areas containing benign and malignant microcalcifications. However, it is very difficult to distinguish benign and malignant microcalcifications. This is reflected in the high percentage of unnecessary biopsies that are performed and many deaths caused by late detection or misdiagnosis. A computer based feature selection and classification system can provide a second opinion to the radiologists in assessment of microcalcifications. The research proposes and investigates a neural-genetic algorithm for feature selection in conjunction with neural and statistical classifiers to classify microcalcification patterns in digital mammograms. The obtained results show that the proposed approach is able to find an appropriate feature subset and neural classifier achieves better results than two statistical models.

บรรณานุกรม :
Zhang, Ping. , Verma, Brijesh. , Kumar, Kuldeep. . (2546). Neural vs. statistical classifier in conjunction with genetic algorithm feature selection in digital mammography.
    กรุงเทพมหานคร : Central Queensland University, Australia.
Zhang, Ping. , Verma, Brijesh. , Kumar, Kuldeep. . 2546. "Neural vs. statistical classifier in conjunction with genetic algorithm feature selection in digital mammography".
    กรุงเทพมหานคร : Central Queensland University, Australia.
Zhang, Ping. , Verma, Brijesh. , Kumar, Kuldeep. . "Neural vs. statistical classifier in conjunction with genetic algorithm feature selection in digital mammography."
    กรุงเทพมหานคร : Central Queensland University, Australia, 2546. Print.
Zhang, Ping. , Verma, Brijesh. , Kumar, Kuldeep. . Neural vs. statistical classifier in conjunction with genetic algorithm feature selection in digital mammography. กรุงเทพมหานคร : Central Queensland University, Australia; 2546.