ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Significant cancer prevention factor extraction : an association rule discovery approach

หน่วยงาน Central Queensland University, Australia

รายละเอียด

ชื่อเรื่อง : Significant cancer prevention factor extraction : an association rule discovery approach
นักวิจัย : Nahar, Jesmin. , Tickle, Kevin. , Ali, Shawkat. , Chen, Yi-Ping Phoebe.
คำค้น : TBA. , 890201 Application Software Packages (excl. Computer Games) , 890202 Application Tools and System Utilities. , 080105 Expert Systems. , Cancer , Algorithms. , Cancer -- Prevention factor -- Association rule -- Mining algorithms
หน่วยงาน : Central Queensland University, Australia
ผู้ร่วมงาน : -
ปีพิมพ์ : 2552
อ้างอิง : http://hdl.cqu.edu.au/10018/44549
ที่มา : Nahar, J, Tickle, K ,Ali, S & Chen, Y 2009, 'Significant cancer prevention factor extraction: an association rule discovery approach', Journal of Medical Systems, pp.1-15. http://dx.doi.org/10.1007/s10916-009-9372-8 (viewed 10/5/10)
ความเชี่ยวชาญ : -
ความสัมพันธ์ : Journal of medical systems. Berlin, Heidelberg. : Springer Science, 2009. (October 2009), p. 1-15 15 pages Refereed 0148-5598 1573-689X , ACQUIRE [electronic resource] : Central Queensland University Institutional Repository.
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Cancer is increasing the total number of unexpected deaths around the world. Until now, cancer research could not significantly contribute to a proper solution for the cancer patient, and as a result, the high death rate is uncontrolled. The present research aim is to extract the significant prevention factors for particular types of cancer.To find out the prevention factors, we first constructed a prevention factor data set with an extensive literature review on bladder, breast, cervical, lung, prostate and skin cancer. We subsequently employed three association rule mining algorithms, Apriori, Predictive apriori and Tertius algorithms in order to discover most of the significant prevention factors against these specific types of cancer. Experimental results illustrate that Apriori is the most useful association rule-mining algorithm to be used in the discovery of prevention factors.

บรรณานุกรม :
Nahar, Jesmin. , Tickle, Kevin. , Ali, Shawkat. , Chen, Yi-Ping Phoebe. . (2552). Significant cancer prevention factor extraction : an association rule discovery approach.
    กรุงเทพมหานคร : Central Queensland University, Australia.
Nahar, Jesmin. , Tickle, Kevin. , Ali, Shawkat. , Chen, Yi-Ping Phoebe. . 2552. "Significant cancer prevention factor extraction : an association rule discovery approach".
    กรุงเทพมหานคร : Central Queensland University, Australia.
Nahar, Jesmin. , Tickle, Kevin. , Ali, Shawkat. , Chen, Yi-Ping Phoebe. . "Significant cancer prevention factor extraction : an association rule discovery approach."
    กรุงเทพมหานคร : Central Queensland University, Australia, 2552. Print.
Nahar, Jesmin. , Tickle, Kevin. , Ali, Shawkat. , Chen, Yi-Ping Phoebe. . Significant cancer prevention factor extraction : an association rule discovery approach. กรุงเทพมหานคร : Central Queensland University, Australia; 2552.