ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Factorization and independence of arithmetic functions

หน่วยงาน จุฬาลงกรณ์มหาวิทยาลัย

รายละเอียด

ชื่อเรื่อง : Factorization and independence of arithmetic functions
นักวิจัย : Pattira Ruengsinsub
คำค้น : Arithmetic functions , Factorization (Mathematics) , Algebraic independence
หน่วยงาน : จุฬาลงกรณ์มหาวิทยาลัย
ผู้ร่วมงาน : Patanee Udomkavanich , Vichian Laohakosol , Chulalongkorn University. Faculty of Science
ปีพิมพ์ : 2546
อ้างอิง : 9741747454 , http://cuir.car.chula.ac.th/handle/123456789/5213
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : -
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Thesis (Ph.D.)--Chulalongkorn University, 2003

This thesis deals with two properties of arithmetic functions, namely, factorization and independence. In 1984, Rearick pointed out that the ring of arithmetic functions is a unique factorization domain but is not a principal ideal domain and so is not a Euclidean domain. Without the Euclidean algorithm, the problem of factorizing arithmetic functions becomes quite difficult. In the first part of this thesis, we propose a technique of factorizing certain classes of arithmetic functions and prove some results about factorization which are based mainly on the norms of such functions. The technique is a generalization of the original works of Rearick which consists of solving a special system of linear differential equations whose coefficients are polynomials in the function to be factorized. The solutions of this system are proved to be the sought after factors with increasing norms. Examples illustrating the technique are also given. In 1986, Shapiro and Sparer made an extensive study of algebraic independence of Dirichlet series. Since the ring of Dirichlet series is isomorphic to that of arithmetic functions, the study in one setting is then equivalent to the other. Shapiro and Sparer's investigation began with a theorem asserting that Dirichlet series are algebraically independent if their Jacobian does not vanish, which is classical in the case of real-valued functions. Taking the Riemann zeta function as a building block, they discovered that Dirichlet series algebraically dependent on the zeta function can uniquely be represented as power series in the logarithms of zeta function. A number of algebraic dependence results of Dirichlet series were derived as consequences. Shapiro and Sparer then went on to investigate analogous results for formal generalized Dirichlet series. Results in the second part of this thesis either extend or simplify some of Shapiro and Sperer's results. These include, for example, replacing the zeta function by Dirichlet series with completely multiplicative coefficients to obtain similar log-series expansions, dependence of series with infinite support, and dependence of non-units whose norms are relatively prime.

บรรณานุกรม :
Pattira Ruengsinsub . (2546). Factorization and independence of arithmetic functions.
    กรุงเทพมหานคร : จุฬาลงกรณ์มหาวิทยาลัย.
Pattira Ruengsinsub . 2546. "Factorization and independence of arithmetic functions".
    กรุงเทพมหานคร : จุฬาลงกรณ์มหาวิทยาลัย.
Pattira Ruengsinsub . "Factorization and independence of arithmetic functions."
    กรุงเทพมหานคร : จุฬาลงกรณ์มหาวิทยาลัย, 2546. Print.
Pattira Ruengsinsub . Factorization and independence of arithmetic functions. กรุงเทพมหานคร : จุฬาลงกรณ์มหาวิทยาลัย; 2546.