ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Identifying auxiliary web images using combination of analyses

หน่วยงาน สถาบันวิจัยและให้คำปรึกษาแห่ง มหาวิทยาลัยธรรมศาสตร์

รายละเอียด

ชื่อเรื่อง : Identifying auxiliary web images using combination of analyses
นักวิจัย : Tewson Seeoun , Choochart Haruechaiyasak , Kondo, Toshiaki
คำค้น : support vector machines , web image classification
หน่วยงาน : สถาบันวิจัยและให้คำปรึกษาแห่ง มหาวิทยาลัยธรรมศาสตร์
ผู้ร่วมงาน : -
ปีพิมพ์ : 2552
อ้างอิง : MM'09 : Proceedings of the seventeen ACM international conference on Multimedia Proceedings of the seventeen ACM international conference on multimedia, Beijing, China. Session, Multimedia grand challenge ; pp. 1125-1126 , 9781605586083 , http://dspace.library.tu.ac.th/handle/3517/4423
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : -
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

As the Web gains more popularity, Web sites become richer in media. Besides text, another most common form of media is image. A Web page can utilize images in various ways such as to illustrate stories, to summarize data and to decorate the page. This leads to a large amount of images embedded in Web pages. However, not all Web images are informative, i.e., engaged with the page for the purpose of delivering useful information. The uninformative or auxiliary images are, for example, logos and banner advertisements. The benefit of classifying Web images as ``informative" or "auxiliary" is the efficient use of available resources. The auxiliary images are insignificant and can be ignored in many tasks including search engine's indexing, for the sake of conciseness of search results, and Web page printing, to reduce ink usage. This paper proposes a solution for the HP Multimedia Grand Challenge to identify informative multimedia contents in Web pages. Our approach is based on a supervised machine learning model trained from a set of 32 features gathered from content analysis of images, Web page layout, and domain name. We adopt the Support Vector Machines (SVM) algorithm to train the classifier. The model is optimized by a grid search technique to select the appropriate set of kernel parameters. The evaluation results based on the 10-fold cross-validation yielded the classification accuracy of 94.08%. The classification results are used to annotate each image accordingly, as in the prototype implementtaion, each image is highlighted with different border color.

บรรณานุกรม :
Tewson Seeoun , Choochart Haruechaiyasak , Kondo, Toshiaki . (2552). Identifying auxiliary web images using combination of analyses.
    กรุงเทพมหานคร : สถาบันวิจัยและให้คำปรึกษาแห่ง มหาวิทยาลัยธรรมศาสตร์ .
Tewson Seeoun , Choochart Haruechaiyasak , Kondo, Toshiaki . 2552. "Identifying auxiliary web images using combination of analyses".
    กรุงเทพมหานคร : สถาบันวิจัยและให้คำปรึกษาแห่ง มหาวิทยาลัยธรรมศาสตร์ .
Tewson Seeoun , Choochart Haruechaiyasak , Kondo, Toshiaki . "Identifying auxiliary web images using combination of analyses."
    กรุงเทพมหานคร : สถาบันวิจัยและให้คำปรึกษาแห่ง มหาวิทยาลัยธรรมศาสตร์ , 2552. Print.
Tewson Seeoun , Choochart Haruechaiyasak , Kondo, Toshiaki . Identifying auxiliary web images using combination of analyses. กรุงเทพมหานคร : สถาบันวิจัยและให้คำปรึกษาแห่ง มหาวิทยาลัยธรรมศาสตร์ ; 2552.