ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Near-lossless multichannel EEG compression based on matrix and tensor decompositions

หน่วยงาน Nanyang Technological University, Singapore

รายละเอียด

ชื่อเรื่อง : Near-lossless multichannel EEG compression based on matrix and tensor decompositions
นักวิจัย : Dauwels, Justin , Srinivasan, K. , Reddy, M. Ramasubba , Cichocki, Andrzej
คำค้น : DRNTU::Engineering::Electrical and electronic engineering
หน่วยงาน : Nanyang Technological University, Singapore
ผู้ร่วมงาน : -
ปีพิมพ์ : 2556
อ้างอิง : Dauwels, J., Srinivasan, K., Reddy, M. R., & Cichocki, A. (2013). Near-lossless multichannel EEG compression based on matrix and tensor decompositions. IEEE journal of biomedical and health informatics, 17(3), 708-714. , http://hdl.handle.net/10220/18355 , http://dx.doi.org/10.1109/TITB.2012.2230012 , 170098
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : IEEE journal of biomedical and health informatics
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

บรรณานุกรม :
Dauwels, Justin , Srinivasan, K. , Reddy, M. Ramasubba , Cichocki, Andrzej . (2556). Near-lossless multichannel EEG compression based on matrix and tensor decompositions.
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Dauwels, Justin , Srinivasan, K. , Reddy, M. Ramasubba , Cichocki, Andrzej . 2556. "Near-lossless multichannel EEG compression based on matrix and tensor decompositions".
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Dauwels, Justin , Srinivasan, K. , Reddy, M. Ramasubba , Cichocki, Andrzej . "Near-lossless multichannel EEG compression based on matrix and tensor decompositions."
    กรุงเทพมหานคร : Nanyang Technological University, Singapore, 2556. Print.
Dauwels, Justin , Srinivasan, K. , Reddy, M. Ramasubba , Cichocki, Andrzej . Near-lossless multichannel EEG compression based on matrix and tensor decompositions. กรุงเทพมหานคร : Nanyang Technological University, Singapore; 2556.