ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Chebyshev Functional Link Neural Network-based modeling and experimental verification for photovoltaic arrays.

หน่วยงาน Nanyang Technological University, Singapore

รายละเอียด

ชื่อเรื่อง : Chebyshev Functional Link Neural Network-based modeling and experimental verification for photovoltaic arrays.
นักวิจัย : Jiang, Lian Lian. , Maskell, Douglas L. , Patra, Jagdish C.
คำค้น : DRNTU::Engineering::Computer science and engineering.
หน่วยงาน : Nanyang Technological University, Singapore
ผู้ร่วมงาน : -
ปีพิมพ์ : 2555
อ้างอิง : Jiang, L. L., Maskell, D. L., & Patra, J. C. (2012). Chebyshev Functional Link Neural Network-based modeling and experimental verification for photovoltaic arrays. The 2012 International Joint Conference on Neural Networks (IJCNN). , http://hdl.handle.net/10220/12377 , http://dx.doi.org/10.1109/IJCNN.2012.6252615
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : -
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

This paper presents a Chebyshev Functional Link Neural Network (CFLNN) based model for photovoltaic modules. There are two basic approaches to build a model - use an analytical modeling technique or use an Artificial Neural Network (ANN) based method. However, both the analytical modeling technique and the traditional Multilayer Perceptron (MLP) model have some disadvantages. For example, in the analytical model, the influence of irradiance and temperature on some parameters of the photovoltaic module, such as the parallel and series resistance and other uncertainty factors, are not taken into consideration. In the case of the multilayer neural network model, there is a large computational complexity in training the network and in its implementation. In order to overcome these advantages, we propose a CFLNN based model for solar modules. The proposed model not only reduces the complexity of the network due to the absence of hidden layers in the network configuration, but also shows better accuracy over the analytical modeling method. In the experimental section, the operating current predicted by CFLNN is compared with the outputs from other two modeling methods - MLP and the two-diode model. Finally, verification is performed using experimental datasets. The results show that the CFLNN modeling method provides better prediction of the output current compared to the analytical model and has a reduced computational complexity than the traditional MLP model.

บรรณานุกรม :
Jiang, Lian Lian. , Maskell, Douglas L. , Patra, Jagdish C. . (2555). Chebyshev Functional Link Neural Network-based modeling and experimental verification for photovoltaic arrays..
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Jiang, Lian Lian. , Maskell, Douglas L. , Patra, Jagdish C. . 2555. "Chebyshev Functional Link Neural Network-based modeling and experimental verification for photovoltaic arrays.".
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Jiang, Lian Lian. , Maskell, Douglas L. , Patra, Jagdish C. . "Chebyshev Functional Link Neural Network-based modeling and experimental verification for photovoltaic arrays.."
    กรุงเทพมหานคร : Nanyang Technological University, Singapore, 2555. Print.
Jiang, Lian Lian. , Maskell, Douglas L. , Patra, Jagdish C. . Chebyshev Functional Link Neural Network-based modeling and experimental verification for photovoltaic arrays.. กรุงเทพมหานคร : Nanyang Technological University, Singapore; 2555.