ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Application of Empirical Mode Decomposition (Emd) for automated detection of epilepsy using Eeg signals

หน่วยงาน Nanyang Technological University, Singapore

รายละเอียด

ชื่อเรื่อง : Application of Empirical Mode Decomposition (Emd) for automated detection of epilepsy using Eeg signals
นักวิจัย : Martis, Roshan Joy , Acharya, U. Rajendra , Tan, Jen Hong , Petznick, Andrea , Yanti, Ratna , Chua, Chua Kuang , Ng, Eddie Yin-Kwee , Tong, Louis
คำค้น : -
หน่วยงาน : Nanyang Technological University, Singapore
ผู้ร่วมงาน : -
ปีพิมพ์ : 2555
อ้างอิง : Martis, R. J., Acharya, U. R., Tan, J. H., Petznick, A., Yanti, R., Chua, C. K., et al. (2012). Application Of Empirical Mode Decomposition (Emd) For Automated Detection Of Epilepsy Using Eeg Signals. International Journal of Neural Systems, 22(6). , http://hdl.handle.net/10220/11625 , http://dx.doi.org/10.1142/S012906571250027X
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : International journal of neural systems
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Epilepsy is a global disease with considerable incidence due to recurrent unprovoked seizures. These seizures can be noninvasively diagnosed using electroencephalogram (EEG), a measure of neuronal electrical activity in brain recorded along scalp. EEG is highly nonlinear, nonstationary and non-Gaussian in nature. Nonlinear adaptive models such as empirical mode decomposition (EMD) provide intuitive understanding of information present in these signals. In this study a novel methodology is proposed to automatically classify EEG of normal, inter-ictal and ictal subjects using EMD decomposition. EEG decomposition using EMD yields few intrinsic mode functions (IMF), which are amplitude and frequency modulated (AM and FM) waves. Hilbert transform of these IMF provides AM and FM frequencies. Features such as spectral peaks, spectral entropy and spectral energy in each IMF are extracted and fed to decision tree classifier for automated diagnosis. In this work, we have compared the performance of classification using two types of decision trees (i) classification and regression tree (CART) and (ii) C4.5. We have obtained the highest average accuracy of 95.33%, average sensitivity of 98%, and average specificity of 97% using C4.5 decision tree classifier. The developed methodology is ready for clinical validation on large databases and can be deployed for mass screening.

บรรณานุกรม :
Martis, Roshan Joy , Acharya, U. Rajendra , Tan, Jen Hong , Petznick, Andrea , Yanti, Ratna , Chua, Chua Kuang , Ng, Eddie Yin-Kwee , Tong, Louis . (2555). Application of Empirical Mode Decomposition (Emd) for automated detection of epilepsy using Eeg signals.
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Martis, Roshan Joy , Acharya, U. Rajendra , Tan, Jen Hong , Petznick, Andrea , Yanti, Ratna , Chua, Chua Kuang , Ng, Eddie Yin-Kwee , Tong, Louis . 2555. "Application of Empirical Mode Decomposition (Emd) for automated detection of epilepsy using Eeg signals".
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Martis, Roshan Joy , Acharya, U. Rajendra , Tan, Jen Hong , Petznick, Andrea , Yanti, Ratna , Chua, Chua Kuang , Ng, Eddie Yin-Kwee , Tong, Louis . "Application of Empirical Mode Decomposition (Emd) for automated detection of epilepsy using Eeg signals."
    กรุงเทพมหานคร : Nanyang Technological University, Singapore, 2555. Print.
Martis, Roshan Joy , Acharya, U. Rajendra , Tan, Jen Hong , Petznick, Andrea , Yanti, Ratna , Chua, Chua Kuang , Ng, Eddie Yin-Kwee , Tong, Louis . Application of Empirical Mode Decomposition (Emd) for automated detection of epilepsy using Eeg signals. กรุงเทพมหานคร : Nanyang Technological University, Singapore; 2555.