ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score.

หน่วยงาน Nanyang Technological University, Singapore

รายละเอียด

ชื่อเรื่อง : Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score.
นักวิจัย : Ong, Marcus Eng Hock. , Lee Ng, Christina Hui. , Goh, Ken. , Liu, Nan. , Koh, Zhi Xiong. , Shahidah, Nur. , Zhang, Tongtong. , Fook-Chong, Stephanie. , Lin, Zhiping.
คำค้น : DRNTU::Engineering::Electrical and electronic engineering.
หน่วยงาน : Nanyang Technological University, Singapore
ผู้ร่วมงาน : -
ปีพิมพ์ : 2555
อ้างอิง : Ong, M. E. H., Lee Ng, C. H., Goh, K., Liu, N., Koh, Z. X., Shahidah, N., et al. (2012). Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score. Critical Care, 16:R108. , http://hdl.handle.net/10220/10171 , http://dx.doi.org/10.1186/cc11396
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : Critical care
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Introduction: A key aim of triage is to identify those with high risk of cardiac arrest, as they require intensive monitoring, resuscitation facilities, and early intervention. We aim to validate a novel machine learning (ML) score incorporating heart rate variability (HRV) for triage of critically ill patients presenting to the emergency department by comparing the area under the curve, sensitivity and specificity with the modified early warning score (MEWS). Methods: We conducted a prospective observational study of critically ill patients (Patient Acuity Category Scale 1 and 2) in an emergency department of a tertiary hospital. At presentation, HRV parameters generated from a 5-minute electrocardiogram recording are incorporated with age and vital signs to generate the ML score for each patient. The patients are then followed up for outcomes of cardiac arrest or death. Results: From June 2006 to June 2008 we enrolled 925 patients. The area under the receiver operating characteristic curve (AUROC) for ML scores in predicting cardiac arrest within 72 hours is 0.781, compared with 0.680 for MEWS (difference in AUROC: 0.101, 95% confidence interval: 0.006 to 0.197). As for in-hospital death, the area under the curve for ML score is 0.741, compared with 0.693 for MEWS (difference in AUROC: 0.048, 95% confidence interval: -0.023 to 0.119). A cutoff ML score ≥ 60 predicted cardiac arrest with a sensitivity of 84.1%, specificity of 72.3% and negative predictive value of 98.8%. A cutoff MEWS ≥ 3 predicted cardiac arrest with a sensitivity of 74.4%, specificity of 54.2% and negative predictive value of 97.8%. Conclusion: We found ML scores to be more accurate than the MEWS in predicting cardiac arrest within 72 hours. There is potential to develop bedside devices for risk stratification based on cardiac arrest prediction.

บรรณานุกรม :
Ong, Marcus Eng Hock. , Lee Ng, Christina Hui. , Goh, Ken. , Liu, Nan. , Koh, Zhi Xiong. , Shahidah, Nur. , Zhang, Tongtong. , Fook-Chong, Stephanie. , Lin, Zhiping. . (2555). Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score..
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Ong, Marcus Eng Hock. , Lee Ng, Christina Hui. , Goh, Ken. , Liu, Nan. , Koh, Zhi Xiong. , Shahidah, Nur. , Zhang, Tongtong. , Fook-Chong, Stephanie. , Lin, Zhiping. . 2555. "Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score.".
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Ong, Marcus Eng Hock. , Lee Ng, Christina Hui. , Goh, Ken. , Liu, Nan. , Koh, Zhi Xiong. , Shahidah, Nur. , Zhang, Tongtong. , Fook-Chong, Stephanie. , Lin, Zhiping. . "Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score.."
    กรุงเทพมหานคร : Nanyang Technological University, Singapore, 2555. Print.
Ong, Marcus Eng Hock. , Lee Ng, Christina Hui. , Goh, Ken. , Liu, Nan. , Koh, Zhi Xiong. , Shahidah, Nur. , Zhang, Tongtong. , Fook-Chong, Stephanie. , Lin, Zhiping. . Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score.. กรุงเทพมหานคร : Nanyang Technological University, Singapore; 2555.