ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae

หน่วยงาน Nanyang Technological University, Singapore

รายละเอียด

ชื่อเรื่อง : Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae
นักวิจัย : Chen, Binbin , Ling, Hua , Chang, Matthew Wook
คำค้น : -
หน่วยงาน : Nanyang Technological University, Singapore
ผู้ร่วมงาน : -
ปีพิมพ์ : 2556
อ้างอิง : Chen, B., Ling, H., & Chang, M. W. (2013). Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnology for Biofuels, 6(21). , http://hdl.handle.net/10220/10083 , http://dx.doi.org/10.1186/1754-6834-6-21
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : Biotechnology for biofuels
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

Background: Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity. In this study, we aimed to improve alkane tolerance in Saccharomyces cerevisiae, a key industrial microbial host, by harnessing heterologous transporters that potentially pump out alkanes. Results: To this end, we attempted to exploit ABC transporters in Yarrowia lipolytica based on the observation that it utilizes alkanes as a carbon source. We confirmed the increased transcription of ABC2 and ABC3 transporters upon exposure to a range of alkanes in Y. lipolytica. We then showed that the heterologous expression of ABC2 and ABC3 transporters significantly increased tolerance against decane and undecane in S. cerevisiae through maintaining lower intracellular alkane level. In particular, ABC2 transporter increased the tolerance limit of S. cerevisiae about 80-fold against decane. Furthermore, through site-directed mutagenesis for glutamate (E988 for ABC2, and E989 for ABC3) and histidine (H1020 for ABC2, and H1021 for ABC3), we provided the evidence that glutamate was essential for the activity of ABC2 and ABC3 transporters, with ATP most likely to be hydrolyzed by a catalytic carboxylate mechanism. Conclusions: Here, we demonstrated that transporter engineering through expression of heterologous efflux pumps led to significantly improved tolerance against alkane biofuels in S. cerevisiae. We believe that our results laid the groundwork for developing robust alkane-producing yeast cells through transporter engineering, which will greatly aid in next-generation alkane biofuel production and recovery.

บรรณานุกรม :
Chen, Binbin , Ling, Hua , Chang, Matthew Wook . (2556). Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae.
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Chen, Binbin , Ling, Hua , Chang, Matthew Wook . 2556. "Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae".
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Chen, Binbin , Ling, Hua , Chang, Matthew Wook . "Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae."
    กรุงเทพมหานคร : Nanyang Technological University, Singapore, 2556. Print.
Chen, Binbin , Ling, Hua , Chang, Matthew Wook . Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. กรุงเทพมหานคร : Nanyang Technological University, Singapore; 2556.