ridm@nrct.go.th   ระบบคลังข้อมูลงานวิจัยไทย   รายการโปรดที่คุณเลือกไว้

An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem

หน่วยงาน Nanyang Technological University, Singapore

รายละเอียด

ชื่อเรื่อง : An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem
นักวิจัย : Cao, Bin , Chang, Chip Hong , Srikanthan, Thambipillai
คำค้น : DRNTU::Engineering::Electrical and electronic engineering
หน่วยงาน : Nanyang Technological University, Singapore
ผู้ร่วมงาน : -
ปีพิมพ์ : 2546
อ้างอิง : Cao, B., Chang, C. H., & Srikanthan, T. (2003). An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem. IEEE Transactions on Circuits And Systems-I: Fundamental Theory and Applications, 50(10), 1296-1303. , 1057-7122 , http://hdl.handle.net/10220/6010 , http://dx.doi.org/10.1109/TCSI.2003.817789
ที่มา : -
ความเชี่ยวชาญ : -
ความสัมพันธ์ : IEEE transactions on circuits and systems-I : fundamental theory and applications
ขอบเขตของเนื้อหา : -
บทคัดย่อ/คำอธิบาย :

The inherent properties of carry-free operations, parallelism and fault-tolerance have made the residue number system a promising candidate for high-speed arithmetic and specialized high-precision digital signal-processing applications. However, the reverse conversion from the residues to the weighted binary number has long been the performance bottleneck, particularly when the number of moduli set increases beyond 3. In this paper, we present an elegant residue-to-binary conversion algorithm for a new 4-moduli set 2^n- 1, 2^n, 2^n +1, 2^2n +1. The new Chinese remainder theorem introduced recently has been employed to exploit the special properties of the proposed moduli set where modulo corrections are done without resorting to the costly and time consuming modulo operations. The resulting architecture is notably simple and can be realized in hardware with only bit reorientation and one multioperand modular adder. The new reverse converter has superior area-time complexity in comparison with the reverse converters for several other 4-moduli sets.

บรรณานุกรม :
Cao, Bin , Chang, Chip Hong , Srikanthan, Thambipillai . (2546). An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem.
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Cao, Bin , Chang, Chip Hong , Srikanthan, Thambipillai . 2546. "An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem".
    กรุงเทพมหานคร : Nanyang Technological University, Singapore.
Cao, Bin , Chang, Chip Hong , Srikanthan, Thambipillai . "An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem."
    กรุงเทพมหานคร : Nanyang Technological University, Singapore, 2546. Print.
Cao, Bin , Chang, Chip Hong , Srikanthan, Thambipillai . An efficient reverse converter for the 4-moduli set {2^n -1, 2^n, 2^n + 1, 2^2n + 1} based on the new Chinese remainder theorem. กรุงเทพมหานคร : Nanyang Technological University, Singapore; 2546.